terraform-provider-google/vendor/github.com/google/go-cmp/cmp/options.go
Paddy 961c878e0d Switch to using Go modules. (#2679)
Switch to using Go modules.

This migrates our vendor.json to use Go 1.11's modules system, and
replaces the vendor folder with the output of go mod vendor.

The vendored code should remain basically the same; I believe some
tree shaking of packages and support scripts/licenses/READMEs/etc.
happened.

This also fixes Travis and our Makefile to no longer use govendor.
2018-12-20 17:22:22 -08:00

454 lines
15 KiB
Go

// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmp
import (
"fmt"
"reflect"
"runtime"
"strings"
"github.com/google/go-cmp/cmp/internal/function"
)
// Option configures for specific behavior of Equal and Diff. In particular,
// the fundamental Option functions (Ignore, Transformer, and Comparer),
// configure how equality is determined.
//
// The fundamental options may be composed with filters (FilterPath and
// FilterValues) to control the scope over which they are applied.
//
// The cmp/cmpopts package provides helper functions for creating options that
// may be used with Equal and Diff.
type Option interface {
// filter applies all filters and returns the option that remains.
// Each option may only read s.curPath and call s.callTTBFunc.
//
// An Options is returned only if multiple comparers or transformers
// can apply simultaneously and will only contain values of those types
// or sub-Options containing values of those types.
filter(s *state, vx, vy reflect.Value, t reflect.Type) applicableOption
}
// applicableOption represents the following types:
// Fundamental: ignore | invalid | *comparer | *transformer
// Grouping: Options
type applicableOption interface {
Option
// apply executes the option, which may mutate s or panic.
apply(s *state, vx, vy reflect.Value)
}
// coreOption represents the following types:
// Fundamental: ignore | invalid | *comparer | *transformer
// Filters: *pathFilter | *valuesFilter
type coreOption interface {
Option
isCore()
}
type core struct{}
func (core) isCore() {}
// Options is a list of Option values that also satisfies the Option interface.
// Helper comparison packages may return an Options value when packing multiple
// Option values into a single Option. When this package processes an Options,
// it will be implicitly expanded into a flat list.
//
// Applying a filter on an Options is equivalent to applying that same filter
// on all individual options held within.
type Options []Option
func (opts Options) filter(s *state, vx, vy reflect.Value, t reflect.Type) (out applicableOption) {
for _, opt := range opts {
switch opt := opt.filter(s, vx, vy, t); opt.(type) {
case ignore:
return ignore{} // Only ignore can short-circuit evaluation
case invalid:
out = invalid{} // Takes precedence over comparer or transformer
case *comparer, *transformer, Options:
switch out.(type) {
case nil:
out = opt
case invalid:
// Keep invalid
case *comparer, *transformer, Options:
out = Options{out, opt} // Conflicting comparers or transformers
}
}
}
return out
}
func (opts Options) apply(s *state, _, _ reflect.Value) {
const warning = "ambiguous set of applicable options"
const help = "consider using filters to ensure at most one Comparer or Transformer may apply"
var ss []string
for _, opt := range flattenOptions(nil, opts) {
ss = append(ss, fmt.Sprint(opt))
}
set := strings.Join(ss, "\n\t")
panic(fmt.Sprintf("%s at %#v:\n\t%s\n%s", warning, s.curPath, set, help))
}
func (opts Options) String() string {
var ss []string
for _, opt := range opts {
ss = append(ss, fmt.Sprint(opt))
}
return fmt.Sprintf("Options{%s}", strings.Join(ss, ", "))
}
// FilterPath returns a new Option where opt is only evaluated if filter f
// returns true for the current Path in the value tree.
//
// The option passed in may be an Ignore, Transformer, Comparer, Options, or
// a previously filtered Option.
func FilterPath(f func(Path) bool, opt Option) Option {
if f == nil {
panic("invalid path filter function")
}
if opt := normalizeOption(opt); opt != nil {
return &pathFilter{fnc: f, opt: opt}
}
return nil
}
type pathFilter struct {
core
fnc func(Path) bool
opt Option
}
func (f pathFilter) filter(s *state, vx, vy reflect.Value, t reflect.Type) applicableOption {
if f.fnc(s.curPath) {
return f.opt.filter(s, vx, vy, t)
}
return nil
}
func (f pathFilter) String() string {
fn := getFuncName(reflect.ValueOf(f.fnc).Pointer())
return fmt.Sprintf("FilterPath(%s, %v)", fn, f.opt)
}
// FilterValues returns a new Option where opt is only evaluated if filter f,
// which is a function of the form "func(T, T) bool", returns true for the
// current pair of values being compared. If the type of the values is not
// assignable to T, then this filter implicitly returns false.
//
// The filter function must be
// symmetric (i.e., agnostic to the order of the inputs) and
// deterministic (i.e., produces the same result when given the same inputs).
// If T is an interface, it is possible that f is called with two values with
// different concrete types that both implement T.
//
// The option passed in may be an Ignore, Transformer, Comparer, Options, or
// a previously filtered Option.
func FilterValues(f interface{}, opt Option) Option {
v := reflect.ValueOf(f)
if !function.IsType(v.Type(), function.ValueFilter) || v.IsNil() {
panic(fmt.Sprintf("invalid values filter function: %T", f))
}
if opt := normalizeOption(opt); opt != nil {
vf := &valuesFilter{fnc: v, opt: opt}
if ti := v.Type().In(0); ti.Kind() != reflect.Interface || ti.NumMethod() > 0 {
vf.typ = ti
}
return vf
}
return nil
}
type valuesFilter struct {
core
typ reflect.Type // T
fnc reflect.Value // func(T, T) bool
opt Option
}
func (f valuesFilter) filter(s *state, vx, vy reflect.Value, t reflect.Type) applicableOption {
if !vx.IsValid() || !vy.IsValid() {
return invalid{}
}
if (f.typ == nil || t.AssignableTo(f.typ)) && s.callTTBFunc(f.fnc, vx, vy) {
return f.opt.filter(s, vx, vy, t)
}
return nil
}
func (f valuesFilter) String() string {
fn := getFuncName(f.fnc.Pointer())
return fmt.Sprintf("FilterValues(%s, %v)", fn, f.opt)
}
// Ignore is an Option that causes all comparisons to be ignored.
// This value is intended to be combined with FilterPath or FilterValues.
// It is an error to pass an unfiltered Ignore option to Equal.
func Ignore() Option { return ignore{} }
type ignore struct{ core }
func (ignore) isFiltered() bool { return false }
func (ignore) filter(_ *state, _, _ reflect.Value, _ reflect.Type) applicableOption { return ignore{} }
func (ignore) apply(_ *state, _, _ reflect.Value) { return }
func (ignore) String() string { return "Ignore()" }
// invalid is a sentinel Option type to indicate that some options could not
// be evaluated due to unexported fields.
type invalid struct{ core }
func (invalid) filter(_ *state, _, _ reflect.Value, _ reflect.Type) applicableOption { return invalid{} }
func (invalid) apply(s *state, _, _ reflect.Value) {
const help = "consider using AllowUnexported or cmpopts.IgnoreUnexported"
panic(fmt.Sprintf("cannot handle unexported field: %#v\n%s", s.curPath, help))
}
// Transformer returns an Option that applies a transformation function that
// converts values of a certain type into that of another.
//
// The transformer f must be a function "func(T) R" that converts values of
// type T to those of type R and is implicitly filtered to input values
// assignable to T. The transformer must not mutate T in any way.
//
// To help prevent some cases of infinite recursive cycles applying the
// same transform to the output of itself (e.g., in the case where the
// input and output types are the same), an implicit filter is added such that
// a transformer is applicable only if that exact transformer is not already
// in the tail of the Path since the last non-Transform step.
//
// The name is a user provided label that is used as the Transform.Name in the
// transformation PathStep. If empty, an arbitrary name is used.
func Transformer(name string, f interface{}) Option {
v := reflect.ValueOf(f)
if !function.IsType(v.Type(), function.Transformer) || v.IsNil() {
panic(fmt.Sprintf("invalid transformer function: %T", f))
}
if name == "" {
name = "λ" // Lambda-symbol as place-holder for anonymous transformer
}
if !isValid(name) {
panic(fmt.Sprintf("invalid name: %q", name))
}
tr := &transformer{name: name, fnc: reflect.ValueOf(f)}
if ti := v.Type().In(0); ti.Kind() != reflect.Interface || ti.NumMethod() > 0 {
tr.typ = ti
}
return tr
}
type transformer struct {
core
name string
typ reflect.Type // T
fnc reflect.Value // func(T) R
}
func (tr *transformer) isFiltered() bool { return tr.typ != nil }
func (tr *transformer) filter(s *state, _, _ reflect.Value, t reflect.Type) applicableOption {
for i := len(s.curPath) - 1; i >= 0; i-- {
if t, ok := s.curPath[i].(*transform); !ok {
break // Hit most recent non-Transform step
} else if tr == t.trans {
return nil // Cannot directly use same Transform
}
}
if tr.typ == nil || t.AssignableTo(tr.typ) {
return tr
}
return nil
}
func (tr *transformer) apply(s *state, vx, vy reflect.Value) {
// Update path before calling the Transformer so that dynamic checks
// will use the updated path.
s.curPath.push(&transform{pathStep{tr.fnc.Type().Out(0)}, tr})
defer s.curPath.pop()
vx = s.callTRFunc(tr.fnc, vx)
vy = s.callTRFunc(tr.fnc, vy)
s.compareAny(vx, vy)
}
func (tr transformer) String() string {
return fmt.Sprintf("Transformer(%s, %s)", tr.name, getFuncName(tr.fnc.Pointer()))
}
// Comparer returns an Option that determines whether two values are equal
// to each other.
//
// The comparer f must be a function "func(T, T) bool" and is implicitly
// filtered to input values assignable to T. If T is an interface, it is
// possible that f is called with two values of different concrete types that
// both implement T.
//
// The equality function must be:
// • Symmetric: equal(x, y) == equal(y, x)
// • Deterministic: equal(x, y) == equal(x, y)
// • Pure: equal(x, y) does not modify x or y
func Comparer(f interface{}) Option {
v := reflect.ValueOf(f)
if !function.IsType(v.Type(), function.Equal) || v.IsNil() {
panic(fmt.Sprintf("invalid comparer function: %T", f))
}
cm := &comparer{fnc: v}
if ti := v.Type().In(0); ti.Kind() != reflect.Interface || ti.NumMethod() > 0 {
cm.typ = ti
}
return cm
}
type comparer struct {
core
typ reflect.Type // T
fnc reflect.Value // func(T, T) bool
}
func (cm *comparer) isFiltered() bool { return cm.typ != nil }
func (cm *comparer) filter(_ *state, _, _ reflect.Value, t reflect.Type) applicableOption {
if cm.typ == nil || t.AssignableTo(cm.typ) {
return cm
}
return nil
}
func (cm *comparer) apply(s *state, vx, vy reflect.Value) {
eq := s.callTTBFunc(cm.fnc, vx, vy)
s.report(eq, vx, vy)
}
func (cm comparer) String() string {
return fmt.Sprintf("Comparer(%s)", getFuncName(cm.fnc.Pointer()))
}
// AllowUnexported returns an Option that forcibly allows operations on
// unexported fields in certain structs, which are specified by passing in a
// value of each struct type.
//
// Users of this option must understand that comparing on unexported fields
// from external packages is not safe since changes in the internal
// implementation of some external package may cause the result of Equal
// to unexpectedly change. However, it may be valid to use this option on types
// defined in an internal package where the semantic meaning of an unexported
// field is in the control of the user.
//
// For some cases, a custom Comparer should be used instead that defines
// equality as a function of the public API of a type rather than the underlying
// unexported implementation.
//
// For example, the reflect.Type documentation defines equality to be determined
// by the == operator on the interface (essentially performing a shallow pointer
// comparison) and most attempts to compare *regexp.Regexp types are interested
// in only checking that the regular expression strings are equal.
// Both of these are accomplished using Comparers:
//
// Comparer(func(x, y reflect.Type) bool { return x == y })
// Comparer(func(x, y *regexp.Regexp) bool { return x.String() == y.String() })
//
// In other cases, the cmpopts.IgnoreUnexported option can be used to ignore
// all unexported fields on specified struct types.
func AllowUnexported(types ...interface{}) Option {
if !supportAllowUnexported {
panic("AllowUnexported is not supported on purego builds, Google App Engine Standard, or GopherJS")
}
m := make(map[reflect.Type]bool)
for _, typ := range types {
t := reflect.TypeOf(typ)
if t.Kind() != reflect.Struct {
panic(fmt.Sprintf("invalid struct type: %T", typ))
}
m[t] = true
}
return visibleStructs(m)
}
type visibleStructs map[reflect.Type]bool
func (visibleStructs) filter(_ *state, _, _ reflect.Value, _ reflect.Type) applicableOption {
panic("not implemented")
}
// reporter is an Option that configures how differences are reported.
type reporter interface {
// TODO: Not exported yet.
//
// Perhaps add PushStep and PopStep and change Report to only accept
// a PathStep instead of the full-path? Adding a PushStep and PopStep makes
// it clear that we are traversing the value tree in a depth-first-search
// manner, which has an effect on how values are printed.
Option
// Report is called for every comparison made and will be provided with
// the two values being compared, the equality result, and the
// current path in the value tree. It is possible for x or y to be an
// invalid reflect.Value if one of the values is non-existent;
// which is possible with maps and slices.
Report(x, y reflect.Value, eq bool, p Path)
}
// normalizeOption normalizes the input options such that all Options groups
// are flattened and groups with a single element are reduced to that element.
// Only coreOptions and Options containing coreOptions are allowed.
func normalizeOption(src Option) Option {
switch opts := flattenOptions(nil, Options{src}); len(opts) {
case 0:
return nil
case 1:
return opts[0]
default:
return opts
}
}
// flattenOptions copies all options in src to dst as a flat list.
// Only coreOptions and Options containing coreOptions are allowed.
func flattenOptions(dst, src Options) Options {
for _, opt := range src {
switch opt := opt.(type) {
case nil:
continue
case Options:
dst = flattenOptions(dst, opt)
case coreOption:
dst = append(dst, opt)
default:
panic(fmt.Sprintf("invalid option type: %T", opt))
}
}
return dst
}
// getFuncName returns a short function name from the pointer.
// The string parsing logic works up until Go1.9.
func getFuncName(p uintptr) string {
fnc := runtime.FuncForPC(p)
if fnc == nil {
return "<unknown>"
}
name := fnc.Name() // E.g., "long/path/name/mypkg.(mytype).(long/path/name/mypkg.myfunc)-fm"
if strings.HasSuffix(name, ")-fm") || strings.HasSuffix(name, ")·fm") {
// Strip the package name from method name.
name = strings.TrimSuffix(name, ")-fm")
name = strings.TrimSuffix(name, ")·fm")
if i := strings.LastIndexByte(name, '('); i >= 0 {
methodName := name[i+1:] // E.g., "long/path/name/mypkg.myfunc"
if j := strings.LastIndexByte(methodName, '.'); j >= 0 {
methodName = methodName[j+1:] // E.g., "myfunc"
}
name = name[:i] + methodName // E.g., "long/path/name/mypkg.(mytype)." + "myfunc"
}
}
if i := strings.LastIndexByte(name, '/'); i >= 0 {
// Strip the package name.
name = name[i+1:] // E.g., "mypkg.(mytype).myfunc"
}
return name
}