package hclsyntax import ( "bufio" "bytes" "fmt" "github.com/apparentlymart/go-textseg/textseg" "github.com/hashicorp/hcl2/hcl" "github.com/zclconf/go-cty/cty" "github.com/zclconf/go-cty/cty/convert" ) type parser struct { *peeker // set to true if any recovery is attempted. The parser can use this // to attempt to reduce error noise by suppressing "bad token" errors // in recovery mode, assuming that the recovery heuristics have failed // in this case and left the peeker in a wrong place. recovery bool } func (p *parser) ParseBody(end TokenType) (*Body, hcl.Diagnostics) { attrs := Attributes{} blocks := Blocks{} var diags hcl.Diagnostics startRange := p.PrevRange() var endRange hcl.Range Token: for { next := p.Peek() if next.Type == end { endRange = p.NextRange() p.Read() break Token } switch next.Type { case TokenNewline: p.Read() continue case TokenIdent: item, itemDiags := p.ParseBodyItem() diags = append(diags, itemDiags...) switch titem := item.(type) { case *Block: blocks = append(blocks, titem) case *Attribute: if existing, exists := attrs[titem.Name]; exists { diags = append(diags, &hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Attribute redefined", Detail: fmt.Sprintf( "The attribute %q was already defined at %s. Each attribute may be defined only once.", titem.Name, existing.NameRange.String(), ), Subject: &titem.NameRange, }) } else { attrs[titem.Name] = titem } default: // This should never happen for valid input, but may if a // syntax error was detected in ParseBodyItem that prevented // it from even producing a partially-broken item. In that // case, it would've left at least one error in the diagnostics // slice we already dealt with above. // // We'll assume ParseBodyItem attempted recovery to leave // us in a reasonable position to try parsing the next item. continue } default: bad := p.Read() if !p.recovery { if bad.Type == TokenOQuote { diags = append(diags, &hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Invalid attribute name", Detail: "Attribute names must not be quoted.", Subject: &bad.Range, }) } else { diags = append(diags, &hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Attribute or block definition required", Detail: "An attribute or block definition is required here.", Subject: &bad.Range, }) } } endRange = p.PrevRange() // arbitrary, but somewhere inside the body means better diagnostics p.recover(end) // attempt to recover to the token after the end of this body break Token } } return &Body{ Attributes: attrs, Blocks: blocks, SrcRange: hcl.RangeBetween(startRange, endRange), EndRange: hcl.Range{ Filename: endRange.Filename, Start: endRange.End, End: endRange.End, }, }, diags } func (p *parser) ParseBodyItem() (Node, hcl.Diagnostics) { ident := p.Read() if ident.Type != TokenIdent { p.recoverAfterBodyItem() return nil, hcl.Diagnostics{ { Severity: hcl.DiagError, Summary: "Attribute or block definition required", Detail: "An attribute or block definition is required here.", Subject: &ident.Range, }, } } next := p.Peek() switch next.Type { case TokenEqual: return p.finishParsingBodyAttribute(ident) case TokenOQuote, TokenOBrace: return p.finishParsingBodyBlock(ident) default: p.recoverAfterBodyItem() return nil, hcl.Diagnostics{ { Severity: hcl.DiagError, Summary: "Attribute or block definition required", Detail: "An attribute or block definition is required here. To define an attribute, use the equals sign \"=\" to introduce the attribute value.", Subject: &ident.Range, }, } } return nil, nil } func (p *parser) finishParsingBodyAttribute(ident Token) (Node, hcl.Diagnostics) { eqTok := p.Read() // eat equals token if eqTok.Type != TokenEqual { // should never happen if caller behaves panic("finishParsingBodyAttribute called with next not equals") } var endRange hcl.Range expr, diags := p.ParseExpression() if p.recovery && diags.HasErrors() { // recovery within expressions tends to be tricky, so we've probably // landed somewhere weird. We'll try to reset to the start of a body // item so parsing can continue. endRange = p.PrevRange() p.recoverAfterBodyItem() } else { end := p.Peek() if end.Type != TokenNewline { if !p.recovery { if end.Type == TokenEOF { diags = append(diags, &hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Missing newline after attribute definition", Detail: "A newline is required after an attribute definition at the end of a file.", Subject: &end.Range, Context: hcl.RangeBetween(ident.Range, end.Range).Ptr(), }) } else { diags = append(diags, &hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Missing newline after attribute definition", Detail: "An attribute definition must end with a newline.", Subject: &end.Range, Context: hcl.RangeBetween(ident.Range, end.Range).Ptr(), }) } } endRange = p.PrevRange() p.recoverAfterBodyItem() } else { endRange = p.PrevRange() p.Read() // eat newline } } return &Attribute{ Name: string(ident.Bytes), Expr: expr, SrcRange: hcl.RangeBetween(ident.Range, endRange), NameRange: ident.Range, EqualsRange: eqTok.Range, }, diags } func (p *parser) finishParsingBodyBlock(ident Token) (Node, hcl.Diagnostics) { var blockType = string(ident.Bytes) var diags hcl.Diagnostics var labels []string var labelRanges []hcl.Range var oBrace Token Token: for { tok := p.Peek() switch tok.Type { case TokenOBrace: oBrace = p.Read() break Token case TokenOQuote: label, labelRange, labelDiags := p.parseQuotedStringLiteral() diags = append(diags, labelDiags...) labels = append(labels, label) labelRanges = append(labelRanges, labelRange) if labelDiags.HasErrors() { p.recoverAfterBodyItem() return &Block{ Type: blockType, Labels: labels, Body: nil, TypeRange: ident.Range, LabelRanges: labelRanges, OpenBraceRange: ident.Range, // placeholder CloseBraceRange: ident.Range, // placeholder }, diags } default: switch tok.Type { case TokenEqual: diags = append(diags, &hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Invalid block definition", Detail: "The equals sign \"=\" indicates an attribute definition, and must not be used when defining a block.", Subject: &tok.Range, Context: hcl.RangeBetween(ident.Range, tok.Range).Ptr(), }) case TokenNewline: diags = append(diags, &hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Invalid block definition", Detail: "A block definition must have block content delimited by \"{\" and \"}\", starting on the same line as the block header.", Subject: &tok.Range, Context: hcl.RangeBetween(ident.Range, tok.Range).Ptr(), }) default: if !p.recovery { diags = append(diags, &hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Invalid block definition", Detail: "Either a quoted string block label or an opening brace (\"{\") is expected here.", Subject: &tok.Range, Context: hcl.RangeBetween(ident.Range, tok.Range).Ptr(), }) } } p.recoverAfterBodyItem() return &Block{ Type: blockType, Labels: labels, Body: nil, TypeRange: ident.Range, LabelRanges: labelRanges, OpenBraceRange: ident.Range, // placeholder CloseBraceRange: ident.Range, // placeholder }, diags } } // Once we fall out here, the peeker is pointed just after our opening // brace, so we can begin our nested body parsing. body, bodyDiags := p.ParseBody(TokenCBrace) diags = append(diags, bodyDiags...) cBraceRange := p.PrevRange() eol := p.Peek() if eol.Type == TokenNewline { p.Read() // eat newline } else { if !p.recovery { if eol.Type == TokenEOF { diags = append(diags, &hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Missing newline after block definition", Detail: "A newline is required after a block definition at the end of a file.", Subject: &eol.Range, Context: hcl.RangeBetween(ident.Range, eol.Range).Ptr(), }) } else { diags = append(diags, &hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Missing newline after block definition", Detail: "A block definition must end with a newline.", Subject: &eol.Range, Context: hcl.RangeBetween(ident.Range, eol.Range).Ptr(), }) } } p.recoverAfterBodyItem() } return &Block{ Type: blockType, Labels: labels, Body: body, TypeRange: ident.Range, LabelRanges: labelRanges, OpenBraceRange: oBrace.Range, CloseBraceRange: cBraceRange, }, diags } func (p *parser) ParseExpression() (Expression, hcl.Diagnostics) { return p.parseTernaryConditional() } func (p *parser) parseTernaryConditional() (Expression, hcl.Diagnostics) { // The ternary conditional operator (.. ? .. : ..) behaves somewhat // like a binary operator except that the "symbol" is itself // an expression enclosed in two punctuation characters. // The middle expression is parsed as if the ? and : symbols // were parentheses. The "rhs" (the "false expression") is then // treated right-associatively so it behaves similarly to the // middle in terms of precedence. startRange := p.NextRange() var condExpr, trueExpr, falseExpr Expression var diags hcl.Diagnostics condExpr, condDiags := p.parseBinaryOps(binaryOps) diags = append(diags, condDiags...) if p.recovery && condDiags.HasErrors() { return condExpr, diags } questionMark := p.Peek() if questionMark.Type != TokenQuestion { return condExpr, diags } p.Read() // eat question mark trueExpr, trueDiags := p.ParseExpression() diags = append(diags, trueDiags...) if p.recovery && trueDiags.HasErrors() { return condExpr, diags } colon := p.Peek() if colon.Type != TokenColon { diags = append(diags, &hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Missing false expression in conditional", Detail: "The conditional operator (...?...:...) requires a false expression, delimited by a colon.", Subject: &colon.Range, Context: hcl.RangeBetween(startRange, colon.Range).Ptr(), }) return condExpr, diags } p.Read() // eat colon falseExpr, falseDiags := p.ParseExpression() diags = append(diags, falseDiags...) if p.recovery && falseDiags.HasErrors() { return condExpr, diags } return &ConditionalExpr{ Condition: condExpr, TrueResult: trueExpr, FalseResult: falseExpr, SrcRange: hcl.RangeBetween(startRange, falseExpr.Range()), }, diags } // parseBinaryOps calls itself recursively to work through all of the // operator precedence groups, and then eventually calls parseExpressionTerm // for each operand. func (p *parser) parseBinaryOps(ops []map[TokenType]*Operation) (Expression, hcl.Diagnostics) { if len(ops) == 0 { // We've run out of operators, so now we'll just try to parse a term. return p.parseExpressionWithTraversals() } thisLevel := ops[0] remaining := ops[1:] var lhs, rhs Expression var operation *Operation var diags hcl.Diagnostics // Parse a term that might be the first operand of a binary // operation or it might just be a standalone term. // We won't know until we've parsed it and can look ahead // to see if there's an operator token for this level. lhs, lhsDiags := p.parseBinaryOps(remaining) diags = append(diags, lhsDiags...) if p.recovery && lhsDiags.HasErrors() { return lhs, diags } // We'll keep eating up operators until we run out, so that operators // with the same precedence will combine in a left-associative manner: // a+b+c => (a+b)+c, not a+(b+c) // // Should we later want to have right-associative operators, a way // to achieve that would be to call back up to ParseExpression here // instead of iteratively parsing only the remaining operators. for { next := p.Peek() var newOp *Operation var ok bool if newOp, ok = thisLevel[next.Type]; !ok { break } // Are we extending an expression started on the previous iteration? if operation != nil { lhs = &BinaryOpExpr{ LHS: lhs, Op: operation, RHS: rhs, SrcRange: hcl.RangeBetween(lhs.Range(), rhs.Range()), } } operation = newOp p.Read() // eat operator token var rhsDiags hcl.Diagnostics rhs, rhsDiags = p.parseBinaryOps(remaining) diags = append(diags, rhsDiags...) if p.recovery && rhsDiags.HasErrors() { return lhs, diags } } if operation == nil { return lhs, diags } return &BinaryOpExpr{ LHS: lhs, Op: operation, RHS: rhs, SrcRange: hcl.RangeBetween(lhs.Range(), rhs.Range()), }, diags } func (p *parser) parseExpressionWithTraversals() (Expression, hcl.Diagnostics) { term, diags := p.parseExpressionTerm() ret := term Traversal: for { next := p.Peek() switch next.Type { case TokenDot: // Attribute access or splat dot := p.Read() attrTok := p.Peek() switch attrTok.Type { case TokenIdent: attrTok = p.Read() // eat token name := string(attrTok.Bytes) rng := hcl.RangeBetween(dot.Range, attrTok.Range) step := hcl.TraverseAttr{ Name: name, SrcRange: rng, } ret = makeRelativeTraversal(ret, step, rng) case TokenStar: // "Attribute-only" splat expression. // (This is a kinda weird construct inherited from HIL, which // behaves a bit like a [*] splat except that it is only able // to do attribute traversals into each of its elements, // whereas foo[*] can support _any_ traversal. marker := p.Read() // eat star trav := make(hcl.Traversal, 0, 1) var firstRange, lastRange hcl.Range firstRange = p.NextRange() for p.Peek().Type == TokenDot { dot := p.Read() if p.Peek().Type == TokenNumberLit { // Continuing the "weird stuff inherited from HIL" // theme, we also allow numbers as attribute names // inside splats and interpret them as indexing // into a list, for expressions like: // foo.bar.*.baz.0.foo numTok := p.Read() numVal, numDiags := p.numberLitValue(numTok) diags = append(diags, numDiags...) trav = append(trav, hcl.TraverseIndex{ Key: numVal, SrcRange: hcl.RangeBetween(dot.Range, numTok.Range), }) lastRange = numTok.Range continue } if p.Peek().Type != TokenIdent { if !p.recovery { if p.Peek().Type == TokenStar { diags = append(diags, &hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Nested splat expression not allowed", Detail: "A splat expression (*) cannot be used inside another attribute-only splat expression.", Subject: p.Peek().Range.Ptr(), }) } else { diags = append(diags, &hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Invalid attribute name", Detail: "An attribute name is required after a dot.", Subject: &attrTok.Range, }) } } p.setRecovery() continue Traversal } attrTok := p.Read() trav = append(trav, hcl.TraverseAttr{ Name: string(attrTok.Bytes), SrcRange: hcl.RangeBetween(dot.Range, attrTok.Range), }) lastRange = attrTok.Range } itemExpr := &AnonSymbolExpr{ SrcRange: hcl.RangeBetween(dot.Range, marker.Range), } var travExpr Expression if len(trav) == 0 { travExpr = itemExpr } else { travExpr = &RelativeTraversalExpr{ Source: itemExpr, Traversal: trav, SrcRange: hcl.RangeBetween(firstRange, lastRange), } } ret = &SplatExpr{ Source: ret, Each: travExpr, Item: itemExpr, SrcRange: hcl.RangeBetween(dot.Range, lastRange), MarkerRange: hcl.RangeBetween(dot.Range, marker.Range), } default: diags = append(diags, &hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Invalid attribute name", Detail: "An attribute name is required after a dot.", Subject: &attrTok.Range, }) // This leaves the peeker in a bad place, so following items // will probably be misparsed until we hit something that // allows us to re-sync. // // We will probably need to do something better here eventually // in order to support autocomplete triggered by typing a // period. p.setRecovery() } case TokenOBrack: // Indexing of a collection. // This may or may not be a hcl.Traverser, depending on whether // the key value is something constant. open := p.Read() // TODO: If we have a TokenStar inside our brackets, parse as // a Splat expression: foo[*].baz[0]. var close Token p.PushIncludeNewlines(false) // arbitrary newlines allowed in brackets keyExpr, keyDiags := p.ParseExpression() diags = append(diags, keyDiags...) if p.recovery && keyDiags.HasErrors() { close = p.recover(TokenCBrack) } else { close = p.Read() if close.Type != TokenCBrack && !p.recovery { diags = append(diags, &hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Missing close bracket on index", Detail: "The index operator must end with a closing bracket (\"]\").", Subject: &close.Range, }) close = p.recover(TokenCBrack) } } p.PushIncludeNewlines(true) if lit, isLit := keyExpr.(*LiteralValueExpr); isLit { litKey, _ := lit.Value(nil) rng := hcl.RangeBetween(open.Range, close.Range) step := &hcl.TraverseIndex{ Key: litKey, SrcRange: rng, } ret = makeRelativeTraversal(ret, step, rng) } else { rng := hcl.RangeBetween(open.Range, close.Range) ret = &IndexExpr{ Collection: ret, Key: keyExpr, SrcRange: rng, OpenRange: open.Range, } } default: break Traversal } } return ret, diags } // makeRelativeTraversal takes an expression and a traverser and returns // a traversal expression that combines the two. If the given expression // is already a traversal, it is extended in place (mutating it) and // returned. If it isn't, a new RelativeTraversalExpr is created and returned. func makeRelativeTraversal(expr Expression, next hcl.Traverser, rng hcl.Range) Expression { switch texpr := expr.(type) { case *ScopeTraversalExpr: texpr.Traversal = append(texpr.Traversal, next) texpr.SrcRange = hcl.RangeBetween(texpr.SrcRange, rng) return texpr case *RelativeTraversalExpr: texpr.Traversal = append(texpr.Traversal, next) texpr.SrcRange = hcl.RangeBetween(texpr.SrcRange, rng) return texpr default: return &RelativeTraversalExpr{ Source: expr, Traversal: hcl.Traversal{next}, SrcRange: rng, } } } func (p *parser) parseExpressionTerm() (Expression, hcl.Diagnostics) { start := p.Peek() switch start.Type { case TokenOParen: p.Read() // eat open paren p.PushIncludeNewlines(false) expr, diags := p.ParseExpression() if diags.HasErrors() { // attempt to place the peeker after our closing paren // before we return, so that the next parser has some // chance of finding a valid expression. p.recover(TokenCParen) p.PopIncludeNewlines() return expr, diags } close := p.Peek() if close.Type != TokenCParen { diags = append(diags, &hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Unbalanced parentheses", Detail: "Expected a closing parenthesis to terminate the expression.", Subject: &close.Range, Context: hcl.RangeBetween(start.Range, close.Range).Ptr(), }) p.setRecovery() } p.Read() // eat closing paren p.PopIncludeNewlines() return expr, diags case TokenNumberLit: tok := p.Read() // eat number token numVal, diags := p.numberLitValue(tok) return &LiteralValueExpr{ Val: numVal, SrcRange: tok.Range, }, diags case TokenIdent: tok := p.Read() // eat identifier token if p.Peek().Type == TokenOParen { return p.finishParsingFunctionCall(tok) } name := string(tok.Bytes) switch name { case "true": return &LiteralValueExpr{ Val: cty.True, SrcRange: tok.Range, }, nil case "false": return &LiteralValueExpr{ Val: cty.False, SrcRange: tok.Range, }, nil case "null": return &LiteralValueExpr{ Val: cty.NullVal(cty.DynamicPseudoType), SrcRange: tok.Range, }, nil default: return &ScopeTraversalExpr{ Traversal: hcl.Traversal{ hcl.TraverseRoot{ Name: name, SrcRange: tok.Range, }, }, SrcRange: tok.Range, }, nil } case TokenOQuote, TokenOHeredoc: open := p.Read() // eat opening marker closer := p.oppositeBracket(open.Type) exprs, passthru, _, diags := p.parseTemplateInner(closer) closeRange := p.PrevRange() if passthru { if len(exprs) != 1 { panic("passthru set with len(exprs) != 1") } return &TemplateWrapExpr{ Wrapped: exprs[0], SrcRange: hcl.RangeBetween(open.Range, closeRange), }, diags } return &TemplateExpr{ Parts: exprs, SrcRange: hcl.RangeBetween(open.Range, closeRange), }, diags case TokenMinus: tok := p.Read() // eat minus token // Important to use parseExpressionWithTraversals rather than parseExpression // here, otherwise we can capture a following binary expression into // our negation. // e.g. -46+5 should parse as (-46)+5, not -(46+5) operand, diags := p.parseExpressionWithTraversals() return &UnaryOpExpr{ Op: OpNegate, Val: operand, SrcRange: hcl.RangeBetween(tok.Range, operand.Range()), SymbolRange: tok.Range, }, diags case TokenBang: tok := p.Read() // eat bang token // Important to use parseExpressionWithTraversals rather than parseExpression // here, otherwise we can capture a following binary expression into // our negation. operand, diags := p.parseExpressionWithTraversals() return &UnaryOpExpr{ Op: OpLogicalNot, Val: operand, SrcRange: hcl.RangeBetween(tok.Range, operand.Range()), SymbolRange: tok.Range, }, diags case TokenOBrack: return p.parseTupleCons() case TokenOBrace: return p.parseObjectCons() default: var diags hcl.Diagnostics if !p.recovery { diags = append(diags, &hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Invalid expression", Detail: "Expected the start of an expression, but found an invalid expression token.", Subject: &start.Range, }) } p.setRecovery() // Return a placeholder so that the AST is still structurally sound // even in the presence of parse errors. return &LiteralValueExpr{ Val: cty.DynamicVal, SrcRange: start.Range, }, diags } } func (p *parser) numberLitValue(tok Token) (cty.Value, hcl.Diagnostics) { // We'll lean on the cty converter to do the conversion, to ensure that // the behavior is the same as what would happen if converting a // non-literal string to a number. numStrVal := cty.StringVal(string(tok.Bytes)) numVal, err := convert.Convert(numStrVal, cty.Number) if err != nil { ret := cty.UnknownVal(cty.Number) return ret, hcl.Diagnostics{ { Severity: hcl.DiagError, Summary: "Invalid number literal", // FIXME: not a very good error message, but convert only // gives us "a number is required", so not much help either. Detail: "Failed to recognize the value of this number literal.", Subject: &tok.Range, }, } } return numVal, nil } // finishParsingFunctionCall parses a function call assuming that the function // name was already read, and so the peeker should be pointing at the opening // parenthesis after the name. func (p *parser) finishParsingFunctionCall(name Token) (Expression, hcl.Diagnostics) { openTok := p.Read() if openTok.Type != TokenOParen { // should never happen if callers behave panic("finishParsingFunctionCall called with non-parenthesis as next token") } var args []Expression var diags hcl.Diagnostics var expandFinal bool var closeTok Token // Arbitrary newlines are allowed inside the function call parentheses. p.PushIncludeNewlines(false) Token: for { tok := p.Peek() if tok.Type == TokenCParen { closeTok = p.Read() // eat closing paren break Token } arg, argDiags := p.ParseExpression() args = append(args, arg) diags = append(diags, argDiags...) if p.recovery && argDiags.HasErrors() { // if there was a parse error in the argument then we've // probably been left in a weird place in the token stream, // so we'll bail out with a partial argument list. p.recover(TokenCParen) break Token } sep := p.Read() if sep.Type == TokenCParen { closeTok = sep break Token } if sep.Type == TokenEllipsis { expandFinal = true if p.Peek().Type != TokenCParen { if !p.recovery { diags = append(diags, &hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Missing closing parenthesis", Detail: "An expanded function argument (with ...) must be immediately followed by closing parentheses.", Subject: &sep.Range, Context: hcl.RangeBetween(name.Range, sep.Range).Ptr(), }) } closeTok = p.recover(TokenCParen) } else { closeTok = p.Read() // eat closing paren } break Token } if sep.Type != TokenComma { diags = append(diags, &hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Missing argument separator", Detail: "A comma is required to separate each function argument from the next.", Subject: &sep.Range, Context: hcl.RangeBetween(name.Range, sep.Range).Ptr(), }) closeTok = p.recover(TokenCParen) break Token } if p.Peek().Type == TokenCParen { // A trailing comma after the last argument gets us in here. closeTok = p.Read() // eat closing paren break Token } } p.PopIncludeNewlines() return &FunctionCallExpr{ Name: string(name.Bytes), Args: args, ExpandFinal: expandFinal, NameRange: name.Range, OpenParenRange: openTok.Range, CloseParenRange: closeTok.Range, }, diags } func (p *parser) parseTupleCons() (Expression, hcl.Diagnostics) { open := p.Read() if open.Type != TokenOBrack { // Should never happen if callers are behaving panic("parseTupleCons called without peeker pointing to open bracket") } p.PushIncludeNewlines(false) defer p.PopIncludeNewlines() if forKeyword.TokenMatches(p.Peek()) { return p.finishParsingForExpr(open) } var close Token var diags hcl.Diagnostics var exprs []Expression for { next := p.Peek() if next.Type == TokenCBrack { close = p.Read() // eat closer break } expr, exprDiags := p.ParseExpression() exprs = append(exprs, expr) diags = append(diags, exprDiags...) if p.recovery && exprDiags.HasErrors() { // If expression parsing failed then we are probably in a strange // place in the token stream, so we'll bail out and try to reset // to after our closing bracket to allow parsing to continue. close = p.recover(TokenCBrack) break } next = p.Peek() if next.Type == TokenCBrack { close = p.Read() // eat closer break } if next.Type != TokenComma { if !p.recovery { diags = append(diags, &hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Missing item separator", Detail: "Expected a comma to mark the beginning of the next item.", Subject: &next.Range, Context: hcl.RangeBetween(open.Range, next.Range).Ptr(), }) } close = p.recover(TokenCBrack) break } p.Read() // eat comma } return &TupleConsExpr{ Exprs: exprs, SrcRange: hcl.RangeBetween(open.Range, close.Range), OpenRange: open.Range, }, diags } func (p *parser) parseObjectCons() (Expression, hcl.Diagnostics) { open := p.Read() if open.Type != TokenOBrace { // Should never happen if callers are behaving panic("parseObjectCons called without peeker pointing to open brace") } p.PushIncludeNewlines(true) defer p.PopIncludeNewlines() if forKeyword.TokenMatches(p.Peek()) { return p.finishParsingForExpr(open) } var close Token var diags hcl.Diagnostics var items []ObjectConsItem for { next := p.Peek() if next.Type == TokenNewline { p.Read() // eat newline continue } if next.Type == TokenCBrace { close = p.Read() // eat closer break } // As a special case, we allow the key to be a literal identifier. // This means that a variable reference or function call can't appear // directly as key expression, and must instead be wrapped in some // disambiguation punctuation, like (var.a) = "b" or "${var.a}" = "b". var key Expression var keyDiags hcl.Diagnostics if p.Peek().Type == TokenIdent { nameTok := p.Read() key = &LiteralValueExpr{ Val: cty.StringVal(string(nameTok.Bytes)), SrcRange: nameTok.Range, } } else { key, keyDiags = p.ParseExpression() } diags = append(diags, keyDiags...) if p.recovery && keyDiags.HasErrors() { // If expression parsing failed then we are probably in a strange // place in the token stream, so we'll bail out and try to reset // to after our closing brace to allow parsing to continue. close = p.recover(TokenCBrace) break } next = p.Peek() if next.Type != TokenEqual && next.Type != TokenColon { if !p.recovery { if next.Type == TokenNewline || next.Type == TokenComma { diags = append(diags, &hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Missing item value", Detail: "Expected an item value, introduced by an equals sign (\"=\").", Subject: &next.Range, Context: hcl.RangeBetween(open.Range, next.Range).Ptr(), }) } else { diags = append(diags, &hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Missing key/value separator", Detail: "Expected an equals sign (\"=\") to mark the beginning of the item value.", Subject: &next.Range, Context: hcl.RangeBetween(open.Range, next.Range).Ptr(), }) } } close = p.recover(TokenCBrace) break } p.Read() // eat equals sign or colon value, valueDiags := p.ParseExpression() diags = append(diags, valueDiags...) if p.recovery && valueDiags.HasErrors() { // If expression parsing failed then we are probably in a strange // place in the token stream, so we'll bail out and try to reset // to after our closing brace to allow parsing to continue. close = p.recover(TokenCBrace) break } items = append(items, ObjectConsItem{ KeyExpr: key, ValueExpr: value, }) next = p.Peek() if next.Type == TokenCBrace { close = p.Read() // eat closer break } if next.Type != TokenComma && next.Type != TokenNewline { if !p.recovery { diags = append(diags, &hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Missing item separator", Detail: "Expected a newline or comma to mark the beginning of the next item.", Subject: &next.Range, Context: hcl.RangeBetween(open.Range, next.Range).Ptr(), }) } close = p.recover(TokenCBrace) break } p.Read() // eat comma or newline } return &ObjectConsExpr{ Items: items, SrcRange: hcl.RangeBetween(open.Range, close.Range), OpenRange: open.Range, }, diags } func (p *parser) finishParsingForExpr(open Token) (Expression, hcl.Diagnostics) { introducer := p.Read() if !forKeyword.TokenMatches(introducer) { // Should never happen if callers are behaving panic("finishParsingForExpr called without peeker pointing to 'for' identifier") } var makeObj bool var closeType TokenType switch open.Type { case TokenOBrace: makeObj = true closeType = TokenCBrace case TokenOBrack: makeObj = false // making a tuple closeType = TokenCBrack default: // Should never happen if callers are behaving panic("finishParsingForExpr called with invalid open token") } var diags hcl.Diagnostics var keyName, valName string if p.Peek().Type != TokenIdent { if !p.recovery { diags = append(diags, &hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Invalid 'for' expression", Detail: "For expression requires variable name after 'for'.", Subject: p.Peek().Range.Ptr(), Context: hcl.RangeBetween(open.Range, p.Peek().Range).Ptr(), }) } close := p.recover(closeType) return &LiteralValueExpr{ Val: cty.DynamicVal, SrcRange: hcl.RangeBetween(open.Range, close.Range), }, diags } valName = string(p.Read().Bytes) if p.Peek().Type == TokenComma { // What we just read was actually the key, then. keyName = valName p.Read() // eat comma if p.Peek().Type != TokenIdent { if !p.recovery { diags = append(diags, &hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Invalid 'for' expression", Detail: "For expression requires value variable name after comma.", Subject: p.Peek().Range.Ptr(), Context: hcl.RangeBetween(open.Range, p.Peek().Range).Ptr(), }) } close := p.recover(closeType) return &LiteralValueExpr{ Val: cty.DynamicVal, SrcRange: hcl.RangeBetween(open.Range, close.Range), }, diags } valName = string(p.Read().Bytes) } if !inKeyword.TokenMatches(p.Peek()) { if !p.recovery { diags = append(diags, &hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Invalid 'for' expression", Detail: "For expression requires 'in' keyword after names.", Subject: p.Peek().Range.Ptr(), Context: hcl.RangeBetween(open.Range, p.Peek().Range).Ptr(), }) } close := p.recover(closeType) return &LiteralValueExpr{ Val: cty.DynamicVal, SrcRange: hcl.RangeBetween(open.Range, close.Range), }, diags } p.Read() // eat 'in' keyword collExpr, collDiags := p.ParseExpression() diags = append(diags, collDiags...) if p.recovery && collDiags.HasErrors() { close := p.recover(closeType) return &LiteralValueExpr{ Val: cty.DynamicVal, SrcRange: hcl.RangeBetween(open.Range, close.Range), }, diags } if p.Peek().Type != TokenColon { if !p.recovery { diags = append(diags, &hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Invalid 'for' expression", Detail: "For expression requires colon after collection expression.", Subject: p.Peek().Range.Ptr(), Context: hcl.RangeBetween(open.Range, p.Peek().Range).Ptr(), }) } close := p.recover(closeType) return &LiteralValueExpr{ Val: cty.DynamicVal, SrcRange: hcl.RangeBetween(open.Range, close.Range), }, diags } p.Read() // eat colon var keyExpr, valExpr Expression var keyDiags, valDiags hcl.Diagnostics valExpr, valDiags = p.ParseExpression() if p.Peek().Type == TokenFatArrow { // What we just parsed was actually keyExpr p.Read() // eat the fat arrow keyExpr, keyDiags = valExpr, valDiags valExpr, valDiags = p.ParseExpression() } diags = append(diags, keyDiags...) diags = append(diags, valDiags...) if p.recovery && (keyDiags.HasErrors() || valDiags.HasErrors()) { close := p.recover(closeType) return &LiteralValueExpr{ Val: cty.DynamicVal, SrcRange: hcl.RangeBetween(open.Range, close.Range), }, diags } group := false var ellipsis Token if p.Peek().Type == TokenEllipsis { ellipsis = p.Read() group = true } var condExpr Expression var condDiags hcl.Diagnostics if ifKeyword.TokenMatches(p.Peek()) { p.Read() // eat "if" condExpr, condDiags = p.ParseExpression() diags = append(diags, condDiags...) if p.recovery && condDiags.HasErrors() { close := p.recover(p.oppositeBracket(open.Type)) return &LiteralValueExpr{ Val: cty.DynamicVal, SrcRange: hcl.RangeBetween(open.Range, close.Range), }, diags } } var close Token if p.Peek().Type == closeType { close = p.Read() } else { if !p.recovery { diags = append(diags, &hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Invalid 'for' expression", Detail: "Extra characters after the end of the 'for' expression.", Subject: p.Peek().Range.Ptr(), Context: hcl.RangeBetween(open.Range, p.Peek().Range).Ptr(), }) } close = p.recover(closeType) } if !makeObj { if keyExpr != nil { diags = append(diags, &hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Invalid 'for' expression", Detail: "Key expression is not valid when building a tuple.", Subject: keyExpr.Range().Ptr(), Context: hcl.RangeBetween(open.Range, close.Range).Ptr(), }) } if group { diags = append(diags, &hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Invalid 'for' expression", Detail: "Grouping ellipsis (...) cannot be used when building a tuple.", Subject: &ellipsis.Range, Context: hcl.RangeBetween(open.Range, close.Range).Ptr(), }) } } else { if keyExpr == nil { diags = append(diags, &hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Invalid 'for' expression", Detail: "Key expression is required when building an object.", Subject: valExpr.Range().Ptr(), Context: hcl.RangeBetween(open.Range, close.Range).Ptr(), }) } } return &ForExpr{ KeyVar: keyName, ValVar: valName, CollExpr: collExpr, KeyExpr: keyExpr, ValExpr: valExpr, CondExpr: condExpr, Group: group, SrcRange: hcl.RangeBetween(open.Range, close.Range), OpenRange: open.Range, CloseRange: close.Range, }, diags } // parseQuotedStringLiteral is a helper for parsing quoted strings that // aren't allowed to contain any interpolations, such as block labels. func (p *parser) parseQuotedStringLiteral() (string, hcl.Range, hcl.Diagnostics) { oQuote := p.Read() if oQuote.Type != TokenOQuote { return "", oQuote.Range, hcl.Diagnostics{ { Severity: hcl.DiagError, Summary: "Invalid string literal", Detail: "A quoted string is required here.", Subject: &oQuote.Range, }, } } var diags hcl.Diagnostics ret := &bytes.Buffer{} var cQuote Token Token: for { tok := p.Read() switch tok.Type { case TokenCQuote: cQuote = tok break Token case TokenQuotedLit: s, sDiags := p.decodeStringLit(tok) diags = append(diags, sDiags...) ret.WriteString(s) case TokenTemplateControl, TokenTemplateInterp: which := "$" if tok.Type == TokenTemplateControl { which = "!" } diags = append(diags, &hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Invalid string literal", Detail: fmt.Sprintf( "Template sequences are not allowed in this string. To include a literal %q, double it (as \"%s%s\") to escape it.", which, which, which, ), Subject: &tok.Range, Context: hcl.RangeBetween(oQuote.Range, tok.Range).Ptr(), }) p.recover(TokenTemplateSeqEnd) case TokenEOF: diags = append(diags, &hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Unterminated string literal", Detail: "Unable to find the closing quote mark before the end of the file.", Subject: &tok.Range, Context: hcl.RangeBetween(oQuote.Range, tok.Range).Ptr(), }) break Token default: // Should never happen, as long as the scanner is behaving itself diags = append(diags, &hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Invalid string literal", Detail: "This item is not valid in a string literal.", Subject: &tok.Range, Context: hcl.RangeBetween(oQuote.Range, tok.Range).Ptr(), }) p.recover(TokenOQuote) break Token } } return ret.String(), hcl.RangeBetween(oQuote.Range, cQuote.Range), diags } // decodeStringLit processes the given token, which must be either a // TokenQuotedLit or a TokenStringLit, returning the string resulting from // resolving any escape sequences. // // If any error diagnostics are returned, the returned string may be incomplete // or otherwise invalid. func (p *parser) decodeStringLit(tok Token) (string, hcl.Diagnostics) { var quoted bool switch tok.Type { case TokenQuotedLit: quoted = true case TokenStringLit: quoted = false default: panic("decodeQuotedLit can only be used with TokenStringLit and TokenQuotedLit tokens") } var diags hcl.Diagnostics ret := make([]byte, 0, len(tok.Bytes)) var esc []byte sc := bufio.NewScanner(bytes.NewReader(tok.Bytes)) sc.Split(textseg.ScanGraphemeClusters) pos := tok.Range.Start newPos := pos Character: for sc.Scan() { pos = newPos ch := sc.Bytes() // Adjust position based on our new character. // \r\n is considered to be a single character in text segmentation, if (len(ch) == 1 && ch[0] == '\n') || (len(ch) == 2 && ch[1] == '\n') { newPos.Line++ newPos.Column = 0 } else { newPos.Column++ } newPos.Byte += len(ch) if len(esc) > 0 { switch esc[0] { case '\\': if len(ch) == 1 { switch ch[0] { // TODO: numeric character escapes with \uXXXX case 'n': ret = append(ret, '\n') esc = esc[:0] continue Character case 'r': ret = append(ret, '\r') esc = esc[:0] continue Character case 't': ret = append(ret, '\t') esc = esc[:0] continue Character case '"': ret = append(ret, '"') esc = esc[:0] continue Character case '\\': ret = append(ret, '\\') esc = esc[:0] continue Character } } var detail string switch { case len(ch) == 1 && (ch[0] == '$' || ch[0] == '!'): detail = fmt.Sprintf( "The characters \"\\%s\" do not form a recognized escape sequence. To escape a \"%s{\" template sequence, use \"%s%s{\".", ch, ch, ch, ch, ) default: detail = fmt.Sprintf("The characters \"\\%s\" do not form a recognized escape sequence.", ch) } diags = append(diags, &hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Invalid escape sequence", Detail: detail, Subject: &hcl.Range{ Filename: tok.Range.Filename, Start: hcl.Pos{ Line: pos.Line, Column: pos.Column - 1, // safe because we know the previous character must be a backslash Byte: pos.Byte - 1, }, End: hcl.Pos{ Line: pos.Line, Column: pos.Column + 1, // safe because we know the previous character must be a backslash Byte: pos.Byte + len(ch), }, }, }) ret = append(ret, ch...) esc = esc[:0] continue Character case '$', '!': switch len(esc) { case 1: if len(ch) == 1 && ch[0] == esc[0] { esc = append(esc, ch[0]) continue Character } // Any other character means this wasn't an escape sequence // after all. ret = append(ret, esc...) ret = append(ret, ch...) esc = esc[:0] case 2: if len(ch) == 1 && ch[0] == '{' { // successful escape sequence ret = append(ret, esc[0]) } else { // not an escape sequence, so just output literal ret = append(ret, esc...) } ret = append(ret, ch...) esc = esc[:0] default: // should never happen panic("have invalid escape sequence >2 characters") } } } else { if len(ch) == 1 { switch ch[0] { case '\\': if quoted { // ignore backslashes in unquoted mode esc = append(esc, '\\') continue Character } case '$': esc = append(esc, '$') continue Character case '!': esc = append(esc, '!') continue Character } } ret = append(ret, ch...) } } return string(ret), diags } // setRecovery turns on recovery mode without actually doing any recovery. // This can be used when a parser knowingly leaves the peeker in a useless // place and wants to suppress errors that might result from that decision. func (p *parser) setRecovery() { p.recovery = true } // recover seeks forward in the token stream until it finds TokenType "end", // then returns with the peeker pointed at the following token. // // If the given token type is a bracketer, this function will additionally // count nested instances of the brackets to try to leave the peeker at // the end of the _current_ instance of that bracketer, skipping over any // nested instances. This is a best-effort operation and may have // unpredictable results on input with bad bracketer nesting. func (p *parser) recover(end TokenType) Token { start := p.oppositeBracket(end) p.recovery = true nest := 0 for { tok := p.Read() ty := tok.Type if end == TokenTemplateSeqEnd && ty == TokenTemplateControl { // normalize so that our matching behavior can work, since // TokenTemplateControl/TokenTemplateInterp are asymmetrical // with TokenTemplateSeqEnd and thus we need to count both // openers if that's the closer we're looking for. ty = TokenTemplateInterp } switch ty { case start: nest++ case end: if nest < 1 { return tok } nest-- case TokenEOF: return tok } } } // recoverOver seeks forward in the token stream until it finds a block // starting with TokenType "start", then finds the corresponding end token, // leaving the peeker pointed at the token after that end token. // // The given token type _must_ be a bracketer. For example, if the given // start token is TokenOBrace then the parser will be left at the _end_ of // the next brace-delimited block encountered, or at EOF if no such block // is found or it is unclosed. func (p *parser) recoverOver(start TokenType) { end := p.oppositeBracket(start) // find the opening bracket first Token: for { tok := p.Read() switch tok.Type { case start, TokenEOF: break Token } } // Now use our existing recover function to locate the _end_ of the // container we've found. p.recover(end) } func (p *parser) recoverAfterBodyItem() { p.recovery = true var open []TokenType Token: for { tok := p.Read() switch tok.Type { case TokenNewline: if len(open) == 0 { break Token } case TokenEOF: break Token case TokenOBrace, TokenOBrack, TokenOParen, TokenOQuote, TokenOHeredoc, TokenTemplateInterp, TokenTemplateControl: open = append(open, tok.Type) case TokenCBrace, TokenCBrack, TokenCParen, TokenCQuote, TokenCHeredoc: opener := p.oppositeBracket(tok.Type) for len(open) > 0 && open[len(open)-1] != opener { open = open[:len(open)-1] } if len(open) > 0 { open = open[:len(open)-1] } case TokenTemplateSeqEnd: for len(open) > 0 && open[len(open)-1] != TokenTemplateInterp && open[len(open)-1] != TokenTemplateControl { open = open[:len(open)-1] } if len(open) > 0 { open = open[:len(open)-1] } } } } // oppositeBracket finds the bracket that opposes the given bracketer, or // NilToken if the given token isn't a bracketer. // // "Bracketer", for the sake of this function, is one end of a matching // open/close set of tokens that establish a bracketing context. func (p *parser) oppositeBracket(ty TokenType) TokenType { switch ty { case TokenOBrace: return TokenCBrace case TokenOBrack: return TokenCBrack case TokenOParen: return TokenCParen case TokenOQuote: return TokenCQuote case TokenOHeredoc: return TokenCHeredoc case TokenCBrace: return TokenOBrace case TokenCBrack: return TokenOBrack case TokenCParen: return TokenOParen case TokenCQuote: return TokenOQuote case TokenCHeredoc: return TokenOHeredoc case TokenTemplateControl: return TokenTemplateSeqEnd case TokenTemplateInterp: return TokenTemplateSeqEnd case TokenTemplateSeqEnd: // This is ambigous, but we return Interp here because that's // what's assumed by the "recover" method. return TokenTemplateInterp default: return TokenNil } } func errPlaceholderExpr(rng hcl.Range) Expression { return &LiteralValueExpr{ Val: cty.DynamicVal, SrcRange: rng, } }